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Abstract— In the present paper, we provide results on the
control of general opinion dynamics systems. The control is
applied to one agent only, called the leader. Explicit control
laws ensure three complementary desired behaviours of the
system: i) drag all agents arbitrarily close to the leader, then
ii) make all agents follow the leader toward a targeted value, iii)
make all agents converge to a targeted consensus value. Unlike
the existing literature, the control is carried out under weak
assumptions on the leader influence. In particular, the leader
may only have a bounded influence range (this for instance
includes the Hegselmann-Krause bounded confidence model).
Finally our results are illustrated by numerical examples.

I. INTRODUCTION

Modelling social systems using engineering tools such as
multi-agent systems is a recent and promising endeavour.
Multi-agent systems have been shown to efficiently model
how opinion dynamics occur as a result of social
interactions [1]. Models of opinion dynamics are often based
on the consensus system, which captures the process of
agreement among a group of agents. In the past decade,
the consensus system has been thoroughly analysed, yielding
a number of conditions on the strength of interactions
guaranteeing that the agents reach consensus [2]–[10].
Other works have also studied the formation of opinion
clusters [11], [12].

The existing literature on opinion dynamics systems has
mainly focused on the analysis of autonomous systems. Only
few studies have tackled the possibility of adding external
stimuli in order to drag the systems to a desired target state.
However, such interventions are widespread in social systems
and significantly impact our markets, politics [13], [14] and
health. External stimuli may for instance come in the form
of advertisements or State subsidies. Among others, it may
help to promote the adoption of innovative behaviours (e.g.,
quit smoking [15], eat healthy) [16].

Understanding the impact of these external stimuli on
opinion dynamics systems is critical to plan successful
interventions in social networks. The present work describes
such a study. Other recent approaches have been proposed
to intervene in social systems. In [17], the authors define
centrality measure assessing the ability of a node to control
the system. However, there, the dynamics of the social
system is described by a generic system of linear differential
equations. Instead, [14], [18] and [19] have studied the
possibility to control opinion dynamics systems such as the
Hegselmann-Krause bounded confidence model [20]. These
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studies usually assume that one or several agents, called
the leaders (or strategic agents), are not influenced by the
others. Instead, the dynamics of the leaders evolve following
a control input. Related pieces of work are [21], [22], where
the authors designed the optimal control for Cucker-Smale
flocking systems.

The systems studied in [14] are the discrete-time
Hegselmann-Krause bounded confidence model and the
discrete-time linear DeGroot model. The authors use one
leader to drag as many agents as possible in finite time to
a target opinion interval. In [18], the author uses leaders
in order to decrease the time before the states of all agents
have converged. The study is carried out on the discrete-time
Hegselmann-Krause bounded confidence model.

In the present work, the goal of the leader is to make all
agents converge toward a specific target value. To the best
of our knowledge, the only existing work which studies the
control of opinion dynamics to drag all the agents toward a
target consensus value is [19]. Like ours, the study focuses
on a continuous-time model. Consistently with the literature
on opinion dynamics, the influence function depends on the
distance between opinions. However, the leader influence
function is assumed to remain positive for arbitrarily large
opinion distance. This assumption does not hold for instance
in the bounded confidence influence model and it requires
the leader to have more influence than the rest of the agents.
This may not always be a realistic assumption. In the present
work, we show that a weaker assumption suffices to control
general opinion dynamics systems.

Precisely, we show that a general model of opinion
dynamics, in the presence of one leader, can be controlled
with weak assumptions on the leader influence function. In
particular, we do not assume that the leader has a larger
influence range or higher influence strength than the other
agents. On the contrary, our results allow an influence
function with bounded support, i.e., where influence vanishes
if the distance between opinions is too large. Finally, we
show that a leader whose speed is saturated still achieves
the control of the opinion dynamics. Both the amplitude
of the saturation and the maximal influence range may be
chosen arbitrarily small. These bounds may represent natural
economic or media limitations of the leader’s power.

To make all agents converge toward a specific target value,
we design a control which acts in three steps. First, gather
all the agents near the leader in finite time. A bound on
this time is provided ; it depends on the parameters selected
in the control. When all agents are sufficiently close to the
leader, drag the agents toward a desired opinion, in finite
time. A time bound is also provided here. When the leader



reaches this desired opinion, make all agents tend toward a
consensus at the desired opinion.

This paper is organized as follows. In Section II, we define
the multi-agent opinion dynamics system we study and we
describe the problem dealt with in the sequel. Section III
contains preliminary lemmas leading to the main results. In
Section IV, we make explicit the control law which drives all
the agents toward a consensus at the desired target opinion.
Section V presents numerical simulations of the system to
illustrate the results of this paper. Finally, we conclude in
Section VI.

Throughout the paper, the notation R will denote the set
of real numbers, R+ the set of the non-negative real numbers
and the notation |.| will denote the absolute value for a real
number.

II. PROBLEM FORMULATION

A. System definition

Let us consider a system of n+1 agents, numbered from 0
to n and forming a multi-agent system in continuous time.
The opinion or state of agent i at time t ∈ R+ is a scalar
denoted xi(t) ∈ R. Among the n+1 agents, we distinguish n
uncontrolled agents and one controlled agent called leader
indexed by 0. In this paper, the leader is not influenced by
the other agents of the system, but it can influence other
agents. The dynamic of the multi-agent system is then given,
for i ∈ N , {1, . . . , n} and t ∈ R+ by

ẋi(t) =
n∑

j=1

f(|xj(t)− xi(t)|)(xj(t)− xi(t))

+ f0(|x0(t)− xi(t)|)(x0(t)− xi(t)),

ẋ0(t) = u(t), |u(t)| ≤ µ, µ > 0 ,

(1)

where f and f0 are non-negative piecewise continuous
influence functions defined on R+ and where u(t) is a control
on the leader’s opinion x0(t). The control is bounded in
norm by a natural saturation denoted µ. This model allows
the leader to influence the agents with an influence function
which can be different from the influence function ruling the
interactions between agents. In the sequel we will assume,
for a given set of initial conditions, the existence of a unique
solution to (1) on R+. We call this solution the trajectory of
the system. The question of existence and uniqueness of this
solution for general functions f and f0 is a hard problem.
The problem was studied in [23] for the particular case of
the Hegselmann-Krause bounded confidence model.

Only the following condition on the influence function of
the leader f0 is assumed. This means that no assumption is
made on the influence function f of the agents, other than
being piecewise continuous.

Assumption 1: It exists η > 0 such that ∀ y ∈ [0; η] we
have f0(y) ≥ f0(η).

We say that an agent i is in the η influence zone of
the leader at time t whenever |xi(t) − x0(t)| ≤ η. In this
case, f0(|xi(t)−x0(t)|) ≥ f0(η). Assumption 1 then ensures

a lower bound on the influence of the leader within an η
influence zone.

Because of the presence of the leader, system (1) is not
autonomous. For this reason, the notion of consensus has
to be clarified. Indeed we can distinguish two kinds of
agreements, each being detailed in the following definitions.

Definition 1: We call consensus a synchronisation among
the agents not including the leader, that is

∀ (i, j) ∈ N 2, lim
t→+∞

|xi(t)− xj(t)| = 0.

Definition 2: We call leader agreement an agreement
among the agents and the leader

∀ i ∈ N , lim
t→+∞

|xi(t)− x0(t)| = 0.

From these definitions we can see that leader agreement
implies consensus.

As every agent is governed by the same dynamics, the
order of the agents remains the same, meaning that

∀ (i, j) ∈ N 2, xi(0) ≥ xj(0) =⇒ ∀ t ≥ 0, xi(t) ≥ xj(t).

This holds because when two agents share the same
opinion, (1) ensures that both agents then share the same
dynamics. Thus, the order between the agents remains the
same at all time. For the rest of the paper, without loss
of generality, we relabel the agents in increasing order of
opinions, that is ∀ t ≥ 0, x1(t) ≤ x2(t) ≤ · · · ≤ xn(t).

B. Problem statement

In this paper we focus on presenting a control satisfying
the following properties.

Problem 1: Given an arbitrary consensus value α ∈ R
and arbitrary fixed initial conditions xi(0) ∈ R, for i ∈ N
and x0(0) ∈ R. Find a control u(t), for t ∈ R+ and
with |u(t)| < µ, µ > 0 such that all xi converge toward α,
i.e. lim

t→+∞
xi(t) = α.

The problem we just stated is subdivided in the three
following subproblems, which are addressed separately in
this paper. Each subproblem focuses on finding a control
ensuring that certain features are obtained. Concatenating the
solutions of these three subproblems leads to a solution of
Problem 1.

Subproblem 1: Given abitrary fixed initial conditions, find
a finite time T and a control u(t) with |u(t)| < µ, µ > 0
for t ∈ [0, T ], such that ∀ i ∈ N , |xi(T )− x0(T )| < η.

The first subproblem deals with the possibility of rallying
all the agents in the η influence zone of the leader in finite
time, disregarding the value around which the agents are
gathered. The goal of the second subproblem is to drag all the
gathered agents toward a desired opinion here called target
value.

Subproblem 2: Let t0 ∈ R+. Given a target consensus
value α ∈ R and arbitrary fixed initial conditions such
that ∀ i ∈ N , |xi(t0) − x0(t0)| < η, find a time t1 ≥ t0



and a control u(t), t ∈ [t0, t1], such that ∀ i ∈ N , we
have |xi(t1)− x0(t1)| < η, and x0(t1) = α.

To completely address Problem 1, once the leader is at the
target opinion, we have to ensure that all agents converge
toward the desired consensus value.

Subproblem 3: Let t0 ∈ R+. Given a target consensus
value α ∈ R and fixed initial conditions such that x0(t0) = α
and ∀ i ∈ N , |xi(t0) − x0(t0)| < η. Find a control u(t)
with |u(t)| < µ, µ > 0, t ∈ [t0,+∞), such that all agents
converge and lim

t→+∞
xi(t) = α.

III. PRELIMINARIES
In this section we present general lemmas which will serve

as a basis for the forthcoming results.
The following lemma describes the behaviour of the

extreme agents in the particular case where the leader is
amidst the other agents.

Lemma 1: Let t ∈ R+. If x0(t) ≥ x1(t) then we have,

ẋ1(t) ≥ f0(|x0(t)− x1(t)|)(x0(t)− x1(t)) ≥ 0. (2)

Likewise if x0(t) ≤ xn(t), then we have

ẋn(t) ≤ −f0(|x0(t)− xn(t)|)(x0(t)− xn(t)) ≤ 0. (3)

This means that when the leader is above the lowest agent,
the lowest agent has a non-decreasing trajectory. Likewise
when the leader is below agent n, the highest agent, agent n
has a non-increasing trajectory. Intuitively, when no agent or
the leader is below agent 1, then agent 1 is not influenced
by any agent with a lower opinion, thus it cannot decrease.

If the leader is amidst the agents, then both (2) and (3)
apply and we can deduce that the agents tend to get closer.
This idea will help to prove Theorem 3 which deals with the
convergence toward consensus and solve Subproblem 3.

Proof: We prove the result for agent 1. The result for
agent n is obtained by the same reasoning. Let us suppose
that for some t ∈ R+ we have x0(t) ≥ x1(t). As the order
between the agents is preserved, agent 1 then has the lowest
opinion in value and we have ∀ i ∈ N , (xi(t)−x1(t)) ≥ 0,
from which we deduce∑n

i=1
f(|xi(t)− x1(t)|)(xi(t)− x1(t)) ≥ 0,

as function f is non-negative. From (1) we then get the
conclusion of the lemma because x0(t) ≥ x1(t) and
function f0 is non-negative.

The following lemma ensures that if the leader’s opinion
is below all the opinions of the agents, and if the control is
sufficiently small in norm, then the leader is able to force
the agent having the lowest opinion to increase its opinion
as much as wanted.

Lemma 2: Under Assumption 1, if

∃ t0 ≥ 0, x1(t0) > x0(t0)− η, (4)

and if
∀ t ≥ t0, |u(t)| ≤ η f0(η), (5)

then
∀ t ≥ t0, x1(t) > x0(t)− η. (6)

Proof: Let us show that (6) is true by contradiction. In
that case, by continuity of the trajectory, it exists an instant

t2 = min{τ ≥ t0 | x1(τ) = x0(τ)− η},

where the agent 1 is at the frontier of the η influence zone
of the leader. By continuity of the trajectories, we can also
define an instant t1 ∈ [t0, t2), sufficiently close to t2, such
that ∀ t ∈ [t1, t2], x1(t) < x0(t), which ensures

∀ t ∈ [t1, t2], x1(t) ∈ [x0(t)− η, x0(t)). (7)

For t ∈ [t1, t2], equation (2) from Lemma 1 applies as the
leader is above agent 1. Moreover, (7) and Assumption 1
yield f0(|x0(t) − x1(t)|) ≥ f0(η), which allows to deduce
from (2) ẋ1(t) + f0(η) x1(t) ≥ f0(η) x0(t). To analyse this
differential inequality, we consider the associated differential
equation ˙̃x1(t) + f0(η) x̃1(t) = f0(η) x0(t), with the
initial condition x̃1(t1) = x1(t1). Then, the trajectory x̃1(t)
satisfies ∀ t ∈ [t1, t2], x1(t) ≥ x̃1(t). As a consequence, (4)
gives x̃1(t1) > x0(t1)− η. Let us show by contradiction

∀ t ∈ [t1, t2], x̃1(t) > x0(t)− η. (8)

To achieve this, we suppose the existence of

t̃2 = min{τ ∈ [t1, t2] | x̃1(τ) = x0(τ)− η}.

We then study the evolution of the quantity

z(t) = x̃1(t)− (x0(t)− η),

for t ∈ [t1, t̃2]. We then have

ż(t) = ˙̃x1(t)− ẋ0(t)
= f0(η)

(
x0(t)− x̃1(t)

)
− ẋ0(t)

= f0(η)
(
η − z(t)

)
− ẋ0(t).

Since by (5) for t ∈ [t1, t̃2], ẋ0(t) ≤ η f0(η), we have the
inequality ż(t) ≥ −f0(η) z(t). Notice that by (8) we also
have z(t1) = x̃1(t1) − (x0(t1) − η) > 0. The Gronwall
Lemma from [24] then ensures

z(t2) ≥ z(t1) exp
(
− f0(η) (t2 − t1)

)
> 0.

This contradicts the definition of t̃2, thus neither t̃2 nor t2
exist and the lemma is proven.

By considering the trajectories xi := −xi, we can infer
the following corollary from Lemma 2.

Corollary 1: Under Assumption 1, if ∃ t0 ≥ 0 such
that xn(t0) < x0(t0) + η, and if ∀ t ≥ t0, |u(t)| ≤ η f0(η),
then ∀ t ≥ t0, xn(t) < x0(t) + η.

IV. MAIN RESULTS

This section contains three theorems containing the main
results of this paper. Each theorem deals with one of the
subproblems stated in II-B and thus the three following
theorems address Problem 1.



A. Rallying control

Theorem 1: Let c ∈ (0, σ], κ in (0,min{ηf0(η), µ}]
and ε ∈ (0, η). Under Assumption 1, for any initial
conditions xi(0) ∈ R, for i ∈ N the following control

u(t) =

{
−c for t ∈ [0, T1),
κ for t ∈ [T1, T2],

(9)

where
T1 = inf{t ≥ 0 | x0(t) ≤ x1(t) + ε}, (10)

and
T2 = inf{t ≥ T1 | x0(t) ≥ xn(t)− ε}, (11)

solves Subproblem 1.

The control we propose is divided into two steps: first
the leader reaches the agent having the lowest opinion, and
then it attracts this agent toward the one having the highest
opinion, thus gathering all agents near himself. To prove
Theorem 1, we need Lemmas 3 and 4.

Remark 1: The choice of a value for ε ∈ (0, η) is
arbitrary. It is important that ε < η, this will be made explicit
in the second step of the control.

Lemma 3: Instant T1 defined in (10) is finite with

T1 ≤ T ′
1 , max

{
0,
x0(0)− (x1(0) + ε)

c

}
. (12)

Moreover, we have x0(T1) ≤ x1(T1) + ε.

Proof: To show that T1 ≤ T ′
1 let us first remark that

if T ′
1 = 0 then T1 = 0. Then we suppose, to obtain a

contradiction, that T1 > T ′
1 > 0. The definition of T1 in (10)

then allow us to write ∀ t ∈ [0, T1), x0(t) > x1(t) + ε.
Equation (2) from Lemma 1 ensures that x1(t) is

non-decreasing for t ∈ [0, T1). Since T ′
1 < T1, x1(t) is also

non-decreasing for t ∈ [0, T ′
1], yielding x1(0) ≤ x1(T

′
1).

Then according to (12) and by integration of (9)

x0(T
′
1) = x0(0)− c T ′

1 = x1(0) + ε ≤ x1(T ′
1) + ε,

which contradicts (12) and then proves the result and the
lemma.

The second step of the control aims at dragging the lowest
agent toward the highest. To achieve this, the leader’s opinion
has to increase sufficiently slowly in order to ensure that the
lowest agent does not fall below the η influence zone of the
leader.

Lemma 4: Under Assumption 1, instant T2 defined
by (11) is finite and

T2 ≤ T ′
2 , T1 +max

{
0,

(xn(T1)− ε)− x0(T1)
κ

}
, (13)

with ε ∈ (0, η). Moreover,

∀ i ∈ N , ∀ t ∈ [T1, T2], xi(t) > x0(t)− η, (14)

∀ i ∈ N , |xi(T2)− x0(T2)| < η. (15)

Proof: The proof of (13) follows the same method used
in the proof of Lemma 3 to prove (12). With t0 := T1,

equation (4) from Lemma 2 is satisfied and the bound on κ
in Theorem 1 ensures that (5) holds. As a consequence and
thanks to Assumption 1, Lemma 2 applies. Recalling that
the order of the agents remains the same, statement (14)
is a direct consequence of Lemma 2. By definition of T2,
we have x0(T2) = xn(T2) − ε, which combined with (14)
gives (15).

The previous lemmas allow us to solve Subproblem 1 by
proving Theorem 1.

Proof of Theorem 1: Applying Lemmas 3 and 4, we
obtain the conclusion of Subproblem 1 with T := T2. �

Remark 2: The control proposed by Theorem 1 allows to
gather all agents as close as we want from the leader by
tuning parameter η. Theorem 1 also guarantees the existence
of a control law which solves Subproblem 1, regardless of
the control saturation µ > 0 : the saturation amplitude can
be chosen arbitrarily small.

B. Trajectory tracking and consensus

We then present a theorem giving conditions on the speed
of the leader to ensure trajectory tracking without losing
influence over the agents.

Theorem 2: Under Assumption 1, if the control is
sufficiently small in norm and all agents are initially in the η
influence zone of the leader, then all the agents remain at all
time in the η influence zone of the leader. Formally, if at a
time t0 we have ∀ i ∈ N , |xi(t0)− x0(t0)| < η, and if

∀ t ≥ t0, |u(t)| ≤ min{η f0(η), µ}, (16)

then ∀ t ≥ t0, ∀ i ∈ N , |xi(t)− x0(t)| < η.

Proof: Lemma 2 ensures ∀ t ≥ t0, x1(t) > x0(t)− η.
Moreover, Corollary 1 ensures ∀ t ≥ t0, xn(t) < x0(t) + η.
As the order of the agents remains the same, the theorem is
proven.

Theorem 2 provides a direct way to solve Subproblem 2
as expressed in the next corollary.

Corollary 2: If α = x0(t0) in Subproblem 2, then it is
solved with T = t0. Otherwise, under Assumption 1, the
following control law solves Subproblem 2

u(t) =
α− x0(t0)
|α− x0(t0)|

min{ηf0(η), µ},∀t ∈ [t0, t0 + T ),

where T =
|α− x0(t0)|

min{ηf0(η), µ}
.

Proof: Following the conditions in Subproblem 1, we
start by assuming ∀i ∈ N , |xi(t0) − x0(t0)| < η. It is
clear that ∀t ∈ [t0, t0 + T ), |u(t)| ∈ (0,min{ηf0(η), µ}]
so that Theorem 2 applies. Moreover, by integration of (1)
we have x0(T ) = α, so that Subproblem 2 is solved.

Once the leader has reached its target value α while
keeping all agents in its η influence zone, it remains to
find a control law which makes all agents converge to α to



solve Subproblem 3. This is precisely what the next theorem
provides.

Theorem 3: Under Assumption 1, if a null control is
applied and all agents are initially in the η influence zone of
the leader, then leader agreement is reached asymptotically
and consensus is obtained. Formally, if at a time t0 we
have ∀i ∈ N , |xi(t0)−xi(t0)| < η, and if ∀t ≥ t0, u(t) = 0,
then ∀ i ∈ N , lim

t→+∞
xi(t) = x0(t0) = α.

Proof: Since (16) holds, Theorem 2 applies and
then ∀ t ≥ t0,∀ i ∈ N , |xi(t) − x0(t)| < η. Let us define
the following instant

T3 = min{t ≥ t0 | xn(t) ≤ x0(t) or x1(t) ≥ x0(t)}.

Two cases are possible:

First case, T3 < +∞ : then we will show that all
agents remain on the same side of the leader after the
instant T3. Let us then suppose, without loss of generality,
that xn(T3) ≤ x0(T3), the other case being symmetrical.
We then show by contradiction that

∀ t ≥ T3, xn(t) ≤ x0(t), (17)

by supposing the existence of an instant t3 > T3 such
that xn(t3) > x0(t3). By continuity of the trajectory, it
then exists t1 ∈ [T3, t3] such that xn(t1) = x0(t1). Still
by continuity, t3 can be chosen close enough to t1 such that

∀ t ∈ [t1, t3], xn(t) ≥ x0(t).

On the one hand, xn(t1) = x0(t1) and xn(t3) > x0(t3).
So by then mean value theorem, it exists t2 ∈ (t1, t3) such
that ẋn(t2) > ẋ0(t2). On the other hand, xn(t2) ≥ x0(t2)
so that by Lemma 1, ẋn(t2) ≤ 0, which contradicts the first
fact and (17) is proven.
Let t ≥ T3. Since the leader is above agent 1, equation (2)
from Lemma 1 applies. Knowing also that ẋ0(t) = 0, we
deduce from (2) that ẋ0(t)−ẋ1(t) ≤ −f0(η)

(
x0(t)−x1(t)

)
.

Using the Gronwall Lemma we then get

0 ≤ x0(t)−x1(t) ≤
(
x0(T3)−x1(T3)

)
exp(−f0(η)(t−T3)),

and deduce limt→+∞ x0(t) − x1(t) = 0. As the order of
the agents remains the same, by using (17) we obtain the
conclusion of the theorem.

Second case, T3 = +∞ : the leader is between agents 1
and n at all times and Lemma 1 applies. By combining (2)
and (3) we obtain ẋn(t) − ẋ1(t) ≤ f0(η)(xn(t) − x1(t)).
Using the Gronwall Lemma we get

0 ≤ xn(t)−x1(t) ≤ (xn(t0)−x1(t0)) exp(−f0(η) (t− t0)),

which proves limt→+∞ x1(t)− xn(t) = 0. Since the leader
remains between agents 1 and n at all times and the order
between the agents stays the same, we obtain the conclusion
of the theorem.

V. NUMERICAL ILLUSTRATIONS
In this section we present numerical simulations to depict

the previous results.
We first illustrate the control we proposed in Theorems 1

and 3 to solve Subproblems 1 and 3. Consider a system
composed of 6 agents and a leader. In this example we
assume f = 0, meaning the agents do not interact and
therefore are not attracted to each other. The leader has the
following Hegselmann-Krause influence function from [20]
on R+

f0(y) =

{
1 if y ∈ [0, 1],
0 otherwise. (18)

This means that the leader’s influence range is 1. As a
consequence, an agent is not influenced by the leader if
the difference between its opinion and the opinion of the
leader is greater than 1. In this example, Assumption 1 is
satisfied taking η = 1. Note that in this case, Assumption 1
would hold taking any value of η in the interval (0, 1]. We
set the saturation constant µ = 1.5. The control law of the
leader is divided into two steps. First, the control is set
as described in Theorem 1 for t ∈ [0, T2], with T2 being
defined in Theorem 1. During this step the parameters of
the control from Theorem 1 are set as follows. The speed
u(t) = −c, with c = µ = 1.5, is applied until the leader
reaches agent 1 at time T1 as defined in Theorem 1, with
distance ε = 0.5. Then, the speed u(t) = κ = η f0(η) = 1 is
applied while the leader pulls agent 1 until reaching agent n
at time T2 as defined in Theorem 1. Lemma 2 ensures that
since the control is bounded in norm by η f0(η), agent 1
follows the leader during this step. At time T2, agent n is
also inside the ε influence zone of the leader so that all
the agents are inside the η influence zone of the leader and
Subproblem 1 is solved. Once all agents are gathered around
the leader, a null control is applied, i.e., u(t) = 0 for t > T2,
to reach consensus following Theorem 3. This shows how
Subproblem 3 is solved. Figure 1 depicts trajectories of the
multi-agent system where all agents are initially equally
spaced in the opinion range [0, 10] and the leader has an
initial opinion of x0(0) = 5.

In Figure 2 we illustrate Theorem 2 with the same
multi-agent system used for the previous illustration,
differing only in the initial conditions. All agents are here
initially in the opinion range (−1, 1) and the leader has an
initial opinion of 0. Because all agents are within the η
influence zone of the leader, the initial time satisfies the
definition of T2 given in Theorem 1. The control used on
the leader is divided into three parts. Between initial time
T2 and time t1, a sine of amplitude η f0(η) is applied. Then
between time t1 and t2, a constant control of value η f0(η)
is used. As the control is bounded in norm by η f0(η) = 1,
Theorem 2 applies and all agents stay in the η influence
zone of the leader. Finally, after time t2, the leader is given
a control u(t) > η f0(η). Since Theorem 2 does not apply,
there is no guarantee that all agents remain within the η
influence zone of the leader. In this particular case, we
observe that eventually all agents leave the η influence zone
of the leader, but this may not always be the case.



Fig. 1. Example of control law proposed in Theorems 1 and 3 applied
to a multi-agent system. The opinions of the 6 agents are in blue while
the opinion of the leader is in magenta. The η influence zone of the
leader introduced in Assumption 1 is depicted by a dashed red line and
the ε influence zone of the leader used in Theorem 1 is shown with a
green dot-dashed line. The two black crosses emphasize the definition of
instants T1 and T2 in Theorem 1.

Fig. 2. Example of trajectory tracking of 6 agents following a leader
to illustrate Theorem 2. On the top graph, the opinions of the agents are
depicted by blue lines while the opinion of the leader is in red. The η
influence zone of the leader defined by Assumption 1 is shown with a
green dashed line. The bottom graph depicts the control u(t) applied to the
leader in red along with the bounds given by Theorem 2.

VI. CONCLUSION

In this paper we presented results on the control of opinion
dynamics systems by proposing a control law acting on a
specific agent called leader. The control law drives all the
agents toward a target consensus value in three consecutive
steps. First the leader gathers the agents around its opinion,
then it drags them toward a target opinion value and finally
ensures that all agents converge toward consensus. This
control law applies even if the leader only has a bounded
influence range and bounded speed. We finally presented
numerical illustrations of the main results of the paper.
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