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Abstract

Existing results in the literature guarantee that the state of multi-agent systems interacting over networks that satisfy the cut-balance
assumption asymptotically converges to a constant vector. Furthermore, when the network is persistently connected the agents reach a
common value called consensus. Many real large-scale networks are obtained by sparsely connecting subnetworks of densely connected
agents. In this context, our objective is to provide new cut-balance assumptions that are adapted to networks of clusters. They are useful
for consensus and agreement in clusters in situations when network topology is such that clusters are given or can be easily identified.
In this case our new cut-balance assumptions can be checked by realizing a smaller number of operations.
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1 Introduction

The multi-agent framework is widely used to model the
dynamics of large numbers of interconnected systems. The
most studied problem in this context is the consensus or syn-
chronization of all agents in the network. The convergence
to consensus is typically characterized by conditions that
depend on the communication graph between agents. Basic
results concern fixed undirected topologies but notable ad-
vances towards directed and time varying topologies have
been provided in (Jadbabaie et al. 2003, Moreau 2005, Ren &
Beard 2005, Hendrickx & Tsitsiklis 2013) for discrete time
dynamics and (Olfati-Saber & Murray 2004, Ren & Beard
2005, Hendrickx & Tsitsiklis 2013, Martin & Girard 2013,
Martin & Hendrickx 2016) for continuous time algorithms.
In (Hendrickx & Tsitsiklis 2013), the authors introduced the
assumption of cut-balance communication which is a general
form of communication reciprocity among the agents. Un-
der the cut-balance assumption, convergence is ensured, and
consensus may occur in groups or globally. The cut-balance
assumption was extended in (Martin & Girard 2013) where
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the authors also provided a convergence rate when global
consensus takes place. One drawback of the cut-balance as-
sumption is that it is a global assumption which may be hard
to verify when not ensured by design.
A direction to search for a local assumption is to split the
agents into clusters. It is reported in the literature that large
scale networks often consist of sparsely interconnected clus-
ters of densely coupled agents (Chow & Kokotović 1985,
Bıyık & Arcak 2007, Morărescu et al. 2016). Different al-
gorithms have been developed to detect the clusters in such
networks (Newman & Girvan 2004, Blondel et al. 2008,
Morărescu & Girard 2011). In the sequel we take advantage
of the partition of network in clusters to state new condi-
tions for consensus.
Consequently, the contribution of the present study is that,
under stronger assumptions on the interaction graph, we
provide a new assumption on reciprocity of communication
which can be verified in a local manner. Therefore, we pro-
vide conditions for consensus that can be checked by per-
forming a reduced number of operations.
Notation. The following notation will be used throughout
the paper. The set of nonnegative integers, real and nonneg-
ative real numbers are denoted by N, R and R+, respec-
tively. A non trivial subset S of a set C, denoted as S @ C,
is a non-empty set with S ( C.

2 Problem formulation

LetN , {1, . . . , n} be a set of n agents. By abuse of nota-
tion we denote both the agent and its index by the same sym-
bol i ∈ N . Each agent is characterized by a scalar state xi ∈
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R,∀i ∈ N that evolves according to the following model

ẋi(t) =

n∑
j=1

aij(t)(xj(t)− xi(t)), ∀i ∈ N (1)

where aij(t) ≥ 0 are measurable functions of time rep-
resenting the communication weights/interaction strength.
Let x(t) = (x1(t), . . . , xn(t))

> ∈ Rn be the overall state
of the network collecting the states of all the agents. It is
noteworthy that x(t), t ∈ R+ is uniquely defined by an
initial state x(0) and dynamics (1). Indeed, there exists a
unique differentiable function of time x : R+ → Rn whose
components satisfy equation (1) for all t ∈ R+. We call it
the trajectory of the overall system. We say the trajectory
asymptotically reaches a consensus when there exists a
common agreement value α ∈ R such that

lim
t→+∞

xi(t) = α, ∀i ∈ N .

In the sequel, agents are assumed to be partitioned inm non-
empty clusters: C1, C2, . . . , Cm ⊂ N , that are assumed to be
given or can be easily identified. For instance clusters may
correspond to groups of agents which are spatially close
while different clusters are spatially distant. Let us introduce
the following supplementary notation: M , {1, . . . ,m}
and ni denotes the cardinality of cluster Ci. Without loss of
generality, we permute the agents’ labels according to the
cluster partition so that when j ∈ Ci and j′ ∈ Ci+1, j < j′.

Definition 1 A directed path of length p in a given di-
rected graph G = (V,F) is a union of directed edges⋃p

k=1(ik, jk) such that ik+1 = jk, ∀k ∈ {1, . . . , p − 1}.
The node j is connected with node i in a directed graph
G = (V,F) if there exists at least a directed path in G from
i to j (i.e. i1 = i and jp = j).

For two subsets of nodes A,B ⊂ N , the sum of commu-
nication weights from B to A is denoted as

wA←B(t) =
∑

i∈A,j∈B
aij(t).

The cut-balance assumption in (Hendrickx & Tsitsiklis
2013) can be formulated as follows.

Hypothesis 1 There exists a constant K ≥ 1 such that for
all non trivial subsets S @ N

wS← (N\S)(t) ≤ K · w(N\S)←S(t), ∀t ≥ 0. (2)

This basically means that if a group of agents influences the
remaining ones, the former group is also influenced by the
remaining ones by at least a proportional amount. A com-
parison between the cut-balance condition and other types
of communication such as existence of a spanning tree has
been carried out in (Hendrickx & Tsitsiklis 2013, Martin &
Girard 2013). Let us recall here the first part of Theorem 1

in (Hendrickx & Tsitsiklis 2013). First, we define the graph
of persistent communication.

Definition 2 A persistent edge associated with system (1)
is a couple (j, i) ∈ N × N such that

∫∞
0
aij(t)dt = +∞.

The graph of persistent communication associated to sys-
tem (1) is the graph G = (N , E) gathering all agents and
including only the persistent edges, i.e.,

E = {(j, i) ∈ N ×N|
∫ ∞
0

aij(t)dt = +∞}.

Theorem 1 Suppose that Hypothesis 1 is satisfied for all
time t ≥ 0. Then, the trajectory of system (1) converges.
Then, there is a directed path from i to j in the graph of
persistent communication G if and only if there is also
a directed path from j to i, and there holds in that case
limt→∞ xi(t) = limt→∞ xj(t).

Notice that Hypothesis 1 is a global assumption which
may be hard to verify when not ensured by design. The
objective of this work is to propose new assumptions that
can be verified locally and provides similar guaranties for
the particular case of graphs partitioned in clusters. Let us
introduce here the main hypotheses of this work.

Assumption 1 (Intra-cluster reciprocity) There exists a
constant KI ≥ 1 such that for any cluster k ∈ M and for
all non trivial subsets S @ Ck,

wS← (Ck\S)(t) ≤ KI · w(Ck\S)←S(t), ∀t ≥ 0.

Assumption 2 (Inter-cluster reciprocity) There exists a
constantKE ≥ 1 such that for all non trivial subset S @M,∑
k∈S

wCk← (N\Ck)(t) ≤ KE ·
∑
k∈S

w(N\Ck)←Ck(t), ∀t ≥ 0.

Assumptions 1 and 2 correspond to Hypothesis 1 within
each cluster and between clusters, respectively. In Assump-
tion 2 the equivalent cut-balance assumption is formulated
in the case where each cluster is considered as a node and
the communication between clusters is weighted by the sum
of agent-wise communication weights. It is necessary that
KI ≥ 1 and KE ≥ 1 and the equality corresponds to sym-
metric communications. The next assumption ensures that
the total communication weight which a cluster Ck receives
cannot exceed a proportion of the weight received by any
non trivial subset of Ck from the rest of Ck.

Assumption 3 (Clustered communication) There exists a
constant ρ > 0 such that for each cluster k ∈ {1, . . . ,m}
and for all non trivial subsets S @ Ck,

wCk← (N\Ck)(t) ≤ ρ · wS← (Ck\S)(t), ∀t ≥ 0.

Remark 1 The purpose of Assumption 3 is to prevent cases
where two subsets of a cluster are more connected to the
outside than to each other. To understand the importance
of Assumption 3, we have the two following facts :
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• Assumption 3 is not necessarily satisfied when Assump-
tions 1 and 2 hold.
• Assumptions 1 and 2 without Assumption 3 are not suf-

ficient to obtain the global cut-balance Hypothesis 1.

A counter-example illustrated by Figure 1 allows to prove
these facts : consider the 4-agent system with communica-
tions described by a12(t) = a21(t) = a34(t) = a43(t) = 1
and a13(t) = a42(t) = t. All these weights form persis-
tent edges. The other weights are assumed to be uniformly
0. The only non-trivial partition in clusters satisfying As-
sumptions 1 and 2 is C1 = {1, 2} and C2 = {3, 4} with
KI = 1 = KE . For this partition, Assumption 3 clearly
fails for instance taking S = {1}. Moreover, the global
cut-balance Hypothesis 1 also fails for instance taking
S := {1, 2, 4} (see Figure 1 for an illustration). The rela-
tion (2) in Hypothesis 1 holds only if K ≥ t,∀t ≥ 0 i.e.,
K =∞, which is not feasible.
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Fig. 1. Illustration of the importance of Assumption 3. Con-
tinuous blue and red lines represents the clusters C1 and C2 as in
Remark 1. Bold unidirectional arrows correspond to the stronger
communication weights with value t while dashed bidirectional
arrows correspond to the weaker communcation weights with
value 1. The dotted-dashed green line corresponds to a particular
set S which makes the cut-balance Hypothesis 1 fail.

3 Asymptotic behavior: Consensus and Clustering

In this section, we suppose that we deal with a network
partitioned in clusters satisfying the communication pattern
introduced by Assumptions 1, 2 and 3. Our main result can
be stated as follows.

Proposition 1 Under Assumptions 1, 2 and 3, the com-
munication weights satisfy Hypothesis 1 with reciprocity
constant K = (KI + ρ+KE max(ρ, 1)).

Notice that the global cut-balance Hypothesis 1 does
not guarantee the existance of a non-trivial partition into
clusters for which Assumptions 1, 2 and 3 are all sat-
isfied. For a counter-example, consider the 3-node uni-
directional circle graph with constant weights such that
a12(t) = a23(t) = a31(t) = 1 and the other weights are uni-
formly 0. The global cut-balanced condition is satisfied but
no non-trivial partition into clusters satisfies Assumption 1.

PROOF. Let S be some non trivial subset ofN . Denote, for
k ∈ {1, . . . ,m}, Sk = S ∩ Ck. Set Sk may either be empty,

equal to Ck or a non trivial subset of Ck. We introduce

E∅ = {k ∈ {1, . . . ,m} | Sk = ∅},
Eeq = {k ∈ {1, . . . ,m} | Sk = Ck},
E@ = {k ∈ {1, . . . ,m} | Sk @ Ck}.

We have

wS← (N\S)(t) =

m∑
k=1

wSk← (N\S)(t)

=
∑

k∈Eeq

wSk← (N\S)(t) +

m∑
k∈E@

wSk← (N\S)(t).

Denote Weq(t) and W@(t) the terms in the right-hand side
above. First, quantity W@(t) can be rewritten as

W@(t) =
∑

k∈E@

wSk← (Ck\Sk)(t) +
∑

k∈E@

wSk←N\(Ck∪S)(t).

Set Sk being non-empty, the first term can be upper bounded
using Assumption 1. Set (Ck \ Sk) being non-empty either,
the second term can be upper bounded using Assumption 3.
This yields

W@(t)≤
∑

k∈E@

KIw(Ck\Sk)←Sk
(t) +

∑
k∈E@

ρw(Ck\Sk)←Sk
(t)

= (KI + ρ)
∑

k∈E@

w(Ck\Sk)←Sk
(t).

Secondly, using the definition of Eeq we rewrite the quantity
Weq as

Weq(t) =
∑

k∈Eeq

wCk← (N\S)(t)

≤
∑

k∈Eeq

∑
h∈M\Eeq

wCk←Ch(t),

where the last inequality comes from (N \ S) ⊆
N \ ∪k∈EeqCk, so that Assumption 2 applies and gives

Weq(t) ≤ KE

∑
h∈M\Eeq

∑
k∈Eeq

wCh←Ck(t) ≤

KE

 ∑
h∈E∅

∑
k∈Eeq

wCh←Ck(t) +
∑

h∈E@

∑
k∈Eeq

wCh←Ck(t)

 .

The first term in the bracket can be bounded by
∑

h∈E∅
wCh←S

and for the second term we use E@ ∩ Eeq = ∅ to get,∑
h∈E@

∑
k∈Eeq

wCh←Ck(t)≤
∑

h∈E@

wCk← (N\Ch)(t).
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Since for k ∈ E@, (Ck \ Sk) is a non trivial subset of Ck,
we apply Assumption 3 to obtain∑
h∈E@

∑
k∈Eeq

wCh←Ck(t)≤ ρ
∑

h∈E@

w(Ch\Sh)←Sh
(t)

≤ ρ
∑

h∈E@

w(Ch\Sh)←S(t).

Consequently,

Weq(t)≤KE max(ρ, 1)
∑

k∈E@∪E∅

w(Ck\Sk)←S(t).

Since wS← (N\S)(t) =W@(t) +Weq(t), it holds

wS← (N\S)(t) ≤ (KI + ρ+KE max(ρ, 1))w(N\S)←S(t).

�

In the cases where the clusters are already given, check-
ing Proposition 1 requires a smaller number of operations.
Precisely, in the general case, the cut-balance assumption
requires to loop over 2n sets S and for each S to sum over
O(n2) terms. On the other hand Assumptions 1 and 3 re-
quire at most maxk∈{1,...,m} nk 2

nk such sets with a sum
over O(n2k) terms and Assumption 2 requires a loop over
2m sets and sum over O(m2) terms. From Theorem 1, we
have the following corollary.

Corollary 1 Suppose that Assumptions 1, 2 and 3 are sat-
isfied. Then, the trajectory of system (1) converges. Let
G = (N , E) be the graph of persistent communication (see
Definition 2). Then,

• there is a directed path from i to j in G if and only if
there is also a directed path from j to i, and there holds
in that case limt→∞ xi(t) = limt→∞ xj(t),
• if a persistent edge exists between two clusters Ck, Ch, k 6=
h ∈M, then

lim
t→∞

xi(t) = lim
t→∞

xj(t), ∀i, j ∈ Ck ∪ Ch.

PROOF. The first item of the corollary is implied by The-
orem 1 and Proposition 1. For the second, notice that if
there exists a persistent edge (j, i) linking two clusters i.e.,
with i ∈ Ck, j ∈ Ch and k 6= h, Assumption 3 implies that
the persistent edges internal to cluster Ck form a strongly
connected graph, and by the reciprocity Assumption 2,
there also exist persistent edges from cluster Ck to Ch, so
that the persistent edges internal to cluster Ch also form
a strongly connected graph. As a conclusion, all pairs of
nodes in Ck ∪ Ch are linked by a path of persistent edges
and the first bullet point applies. �

When any two agents belonging to a cluster Ck, k ∈ M
are connected by a persistent directed path, the first item of

Corollary 1 guarantees that a local agreement is reached in
Ck. If the local agreements αk, αh ∈ R are reached in clus-
ters Ck, Ch, k 6= h ∈ M, respectively, and a persistent link
exists between the two clusters, the second item of Corol-
lary 1 implies αk = αh. In other words we provide a flex-
ible characterization of the asymptotic behavior describing
agreement in: clusters, groups of clusters or overall network.

4 Conclusion

In this note we investigated consensus in network struc-
tured in clusters. Our main assumptions guaranteeing con-
sensus in this framework are adaptations of the global
cut-balance assumption. We believe that the conditions we
propose are better adapted to the clustered communica-
tions case because they are local and consequently their
verification requires a smaller number of operations.
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