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Abstract—1In this paper, we consider a multi-agent system
consisting of mobile agents with second-order dynamics. The
communication network is determined by a standard interac-
tion rule based on the distance between agents. The goal of
this paper is to determine practical conditions (on the initial
positions and velocities of agents) ensuring that the agents
asymptotically agree on a common velocity (i.e. a flocking
behavior is achieved). For this purpose, we define a new
notion of graph robustness which allows us to establish such
conditions, building upon previous work on multi-agent systems
with switching communication networks. Though conservative,
our approach gives conditions that can be verified a priori. Our
result is illustrated through simulations.

I. INTRODUCTION

Cooperative behaviors generating complex phenomena are
observed in nature [1], [4]. Multi-agent systems also find
applications in technical areas such as mobile sensor net-
works [5], cooperative robotics [3] or distributed implemen-
tation of algorithms [13]. A central question arising in the
study of multi-agent systems is whether the group will be
able to reach a consensus. Intuitively, agents are said to reach
a consensus when all individuals agree on a common value
(e.g. the heading direction of a flock of birds, the candidate
to elect for voters).

To carry out formal studies on consensus problems, one
usually assumes that the multi-agent system follows some
abstract communication protocol and then investigates con-
ditions under which a consensus will be reached. Existing
frameworks include discrete and continuous-time systems,
involving or neglecting time-delays in the communication
process. The communication network between agents is
usually modeled by a graph. Its topology is either assumed to
be fixed, or can switch over time. The switching topology of
the interactions is sometimes assumed to depend on the state
of the agents (e.g. the strength of the communication can be
a function of the distance between agents). The order of
the dynamics of the agents also varies between the different
models. For example, second-order models can be useful to
represent the dynamics of both the speed and position of
agents. Olfati-Saber, Fax and Murray review results on the
subject in [10].

Most papers have investigated sufficient conditions en-
suring asymptotic consensus. The assumptions made in the
models are usually rather general (see e.g. [9]). This enables
the given conditions to apply in a wide range of cases.
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Conditions usually require invariant connectivity properties
in the communication network over time. A drawback in
such conditions is that they often cannot be verified a priori.

In this paper we consider a group of agents with second-
order dynamics. The communication network is determined
by a standard interaction rule based on the distance between
agents. The goal of this paper is to determine practical
conditions (on the initial positions and velocities of agents)
ensuring that the agents eventually agree on a common ve-
locity (i.e. a flocking behavior is achieved). We define a new
notion of graph robustness which allows us, building upon
previous work such as [11], to establish such conditions.
Though conservative, our approach gives conditions that can
be verified a priori. Moreover, it is computationally tractable
and can be fully automated. Our result is illustrated through
simulations.

Another paper has investigated sufficient conditions on
the initial positions and velocities ensuring flocking [7].
However, the conditions in [7] ensure that the initial commu-
nication links are preserved for all time whereas our more
general conditions allow some of the initial communication
links to be broken, provided a path is preserved between the
agents.

II. PROBLEM FORMULATION

In this paper, we study a continuous-time, multi-agent
system. We consider a set V = {1,...,n} of mobile agents
evolving in a d-dimensional space. Each agent ¢ € V is
characterized by its position z;(t) € R? and its velocity
v;(t) € RY. The initial positions and velocities are given
by z;(0) = 29 and v;(0) = vY. The agents exchange
information over a communication network given by a graph
G(t) = (V,E(t)); the topology of the communication
network depends on the relative position of agents and is
therefore subject to change. The agents use the available
information to adapt their velocity in order to achieve a
flocking behavior.

Formally, the evolution of each agent © € V' is described
by the following system of differential equations:

i(t) = vi(t)
bi(t) =Y (v(t) —wi(t)) M
JEN:(t)
where N;(t) = {7 € V; (4,1) € E(t)} is the set of agents
communicating with ¢ at time ¢, also termed neighborhood of

1. In this paper we focus on neighborhoods of agents defined
by a metric interaction rule as follows:

Ni(t) = {j € V; ll=i(t) — z; (1) < R} @)



where ||.|| denote the usual Euclidean norm' and R is the
radius within which agents are able to communicate. Let us
remark that equation (2) indicates that the communication
network given by metric interactions is symmetric (i.e. if
agent 7 receives information from agent j, ¢ also sends
information to j). Metric interactions are usually assumed
to be a good representation of how collective behavior
takes place. Thus, most of the literature on the subject,
including [12], [14], uses them.

We say that the agents achieve a flocking behavior if all
the agents asymptotically move toward a common direction:
there exists v* € R? such that

VieV, lim v;(t) =v".
t——+o0
The goal of this paper is to determine easily checkable
conditions (on the initial positions and velocities of agents)
ensuring that a flocking behavior is achieved.

III. PRELIMINARIES

In this section, we review some results from algebraic
graph theory and multi-agent systems that will be useful in
the subsequent discussion.

A. Algebraic Graph Theory

Let us recall some standard results from algebraic graph
theory. More details can be found, for instance, in [6], [8].

An undirected graph G is a couple (V, ) consisting of a
set of nodes V = {1,...,n} and a set of edges given by a
relation £ C VxV that is symmetric ((¢,7) € £ iff (j,1) € £)
and anti-reflexive (Vi € V, (i,1) ¢ £). If (4,7) € &, we say
that ¢ is a neighbor of j. The degree d; of a node ¢ € V is
the number of neighbors of ¢. A path between ¢ and j is a
sequence of nodes (i1,12,...,4,) such that iy =4, i, = j
and Vk € {1,...,p — 1}, (i, ik+1) € £. We shall consider
throughout this paper paths without loops: for all k, k' €
{1,...,p— 1}, k # k' implies i), # ips. A graph is said to
be connected if for, every couple of nodes (i,7) € V x V
such that 7 # j, there exists a path between ¢ and j. A graph
G' = (V,&’) is said to be a (spanning) subgraph of G if
g CE.

The Laplacian matrix L = ({;;) of G is the n x n matrix
defined for i, 5 € V by

d; ifi=j,
Lij=< —1 if (4,5) € &, 3)
0  otherwise.

This matrix is symmetric and positive semi-definite. Its
eigenvalues are therefore nonnegative reals. 0 is an eigen-

value of L with eigenvector 1,, = (1,...,1). We denote the
eigenvalues of L by

0=Xx(G) < X(G) <... < A(G).

The second smallest eigenvalue of L, A2(G) is usually
referred to as the algebraic connectivity of graph G. If G

'In the following, ||.|| will denote the usual Euclidean norm on R% or
R™¢ depending on the context.

is connected then A2(G) > 0. If G’ is a subgraph of G
then the second eigenvalue A2(G’) of its Laplacian matrix
L’ satisfies A2(G') < A2(G).

B. Consensus over Dynamic Networks

In this section, we recall a result from [11] which will be
useful for our study.

Let z(t) = (21(t),...,z,(t)) € R™ and v(t) =
(v1(t), ..., v,(t)) € R™ be the stacked vectors of positions
and velocities, respectively. We also define the stacked vec-
tors of initial positions and velocities: #° = (29,...,2%) €
R" and v* = (v9,...,v9) € R Let L(t) = L(t) ® Iy
where L(t) is the Laplacian matrix of graph G(t), I4 is the
d x d identity matrix and ® denotes the Kronecker product.

Then, the second equation in (1) becomes in matrix form
b(t) = —L(t)v(t). 4)

Let v* = (v) 4+ -+ +vY)/n be the average value of the
initial velocities. Since L(t) is symmetric and 1,, 1 is an
eigenvector associated to eigenvalue 0O, the average of the
velocities is preserved by (4). It follows that if the agents
achieve a flocking behavior, the common asymptotic velocity
is necessarily v*.

For i € V, let §;(t) = v;(t) — v*, we define the velocity
disagreement vector 6(t) = (01(¢),...,0,(t)). Let y;(t) =
2i(t) — vt and y(t) = (i (£),. ., ya(£)), then G(t) = 3(2).
The vector y(t) essentially gives the relative positions of the
agents, as we have

Vi, j €V, zit) — x;(t) = yilt) — y;(t).

Let us assume that the graph G(¢) remains in a set II of
connected graphs for all time ¢ € R™. The set of connected
graphs with n nodes (and thus II) is finite and therefore
mingem A2(G) is well defined and strictly positive. We now
state the following result from [11] which shows that if
the graph G(t) remains connected then the agents achieve
a flocking behavior.

Theorem 1: [11] Let I C R™ be an interval containing 0,
let v : I — R"™ be a solution of (4). If graph G/(t) remains
in a set II of connected graphs for all ¢ € I, then for all
tel

6] < e~ [la(0)]

where k = min A2 (G).
Gell

In [11], it is assumed that the agents evolve in a one-
dimensional space (d = 1). However, it is straightforward to
extend this result to higher dimensions.

The previous result gives sufficient conditions to achieve
flocking behavior. However, for arbitrary initial positions and
velocities, it is unclear whether the graph G(¢) will remain
connected for all ¢ € RT. In the following, we identify such
a set of initial positions and velocities based on a measure
of graph robustness.



IV. GRAPH ROBUSTNESS ANALYSIS

In this section, we define a notion of robustness for graphs
defined using the metric interaction rule (2). For ¢ € V), let
z; € R% be a position of agent i. Let x = (z1,...,x,), we
define the associated graph G, = (V, &,) with

€ ={(i,4) €V xV; |z — ;] < R}.

Let 2° € R™ be a reference configuration for the positions
of the agents. Assuming that G0 is a connected graph, we
are interested in characterizing a neighborhood of x° such
that for any perturbed configuration y in this neighborhood,
the graph G, is connected, though not necessarily equal to
G ,0. We introduce a measure of robustness for the graph G0
which allows us to identify such a neighborhood. We also
show that there exists a connected subgraph of G o which
is also a subgraph of G, for all y in this neighborhood.
Finally, we provide an algorithm to compute this measure of
robustness.

A. Measure of Robustness

Our measure of robustness of the graph G o relies on the
extend to which two agents can move away from each other
before the communication is lost. This is measured by the
slackening of a path (i1,4s,...,iy) of G o defined by

p—1

Jip) = min(R — [}a?, — 25,

s(i1, 42, . .. R

By definition of G,o, we have that, for all paths
(11,22, ... ,ip), 0 < s(i1,42,...,4p) < R. Intuitively, if
the distances between agents do not change more than
s(i1,12,...,1p), then the path (iq,42,...,%,) is preserved.
We can now define the path-robustness p;; between two
agents ¢ and j € V with i # j, as the maximal slackening
of all paths between ¢ and j:
+ip)

pij = max s(i1,02, . .-

* (i1yi,nrip) EPaths(i,5)
where Paths(i, j) is the set of all paths from i to j in Gyo.
Since G,o is assumed to be connected, Paths(i,j) is not
empty and for all ¢,5 € V, 0 < p;; < R. Also, for i € V,
we set p;; = R. Intuitively, if the distances between agents
do not change more than p;; then there remains at least one
path between agents ¢ and j.

Finally, the robustness pg_, of the graph G o is defined
as the minimal path-robustness between all pairs of nodes

PGLo = (i}};ienvz Pij-

Then, we have 0 < PG < R. If the distances between
agents do not change more than p¢_, then for any two agents
1,7 €V, there remains a path between ¢ and j and therefore
the graph remains connected. This will be proved formally in
Proposition 4. Moreover, we will also show that a subgraph
of G;0 (named core robust subgraph) is preserved.

Definition 2: The core robust subgraph of G, o is the
graph M(G o) = (V, M(E0)) where

M(E0) ={(4,5) €V X V; [|2? =2 < R~ pgo}

Fig. 1. Graph G_o (all lines) and the associated core robust subgraph
M(G ,0) (thicker lines only). The circle represents the maximum commu-
nication radius of the top right agent

Let us remark that since PG, = 0, M(Go) is clearly
a subgraph of G0, the following result states that it is
connected:

Lemma 3: Let 2° € R™ be a reference configuration such
that the associated graph G, o is connected. Then, the core
robust subgraph M (G o) is connected.

Proof: Let ¢ and j € V, then p;; > pg ,. Let
(41,%2,...,1p) be a path of G,o between ¢ and j with
maximal slackening. Hence, s(i1,42,...,%5) = p;;. Then,
forall k € {1,...,p—1},

R— ||a:?k — x?Hl L ip) > PG,0-

Therefore, (if,ik+1) € M(Epo), forall k € {1,...,p—1}.
It follows that (i1, 12, ...,%,) is a path of M(Go) between
i and j. Thus, M(G0) is connected. |

An example of a core robust subgraph is shown in Fig-
ure 1. We can now state the main result of this section.

| > s(i1, o, ..

Proposition 4: Let z° € R™ be a reference configuration
such that the associated graph G0 is connected. Let 3y € R™¢
be a perturbed configuration such that
PG o
V2 ®
Then, M(G,0) is a subgraph of G, and G, is connected.

Proof: Let z = (21,...,2,) such that z = y — x°. For
all 4,5 € V, —22; - 2; < ||zi]|* + /25> Then, it follows that

ly — 2°|| <

lzall® + 11211 = 22: - 2
2(11z:l* + 112511%)
2|12 = 2lly — 2°||*.

2 — 21

IN A

Then, from (5), we have for all i,j € V, [|z; — ;|| < pg -
Let (4,7) € M(Eyo), then by Definition 2, it follows that
[z — 29|l < R - pg_,- Thus,

lyi —yill = 2 — 2] + 2 — 2|

49 — 2| + [l — 25|

R—pc,, + pc,,

R.

This means that (¢, j) € &,. Therefore M (G o) is a subgraph

of Gy. By Lemma 3, M(Go0) is connected. Therefore G,
is connected as well. u

INIACIA



B. Computation of the Graph Robustness

In the previous paragraph, we characterized a neighbor-
hood of the reference configuration such that the connectivity
of the interaction graph is preserved. For Proposition 4 to be
useful, the robustness pg_, must be computable. This can be
done using dynamic programming by adapting the Floyd-
Warshall algorithm for computing shortest paths in graphs
(see e.g. [2]) as shown in Algorithm 1. It runs with space-
complexity O(n?) and time-complexity O(n?).

Algorithm 1 Computation of the robustness p¢_,

// Initialization:
V(i,j) € V2, p0 — R—[la? — 22|
/I Main loop:
for k €V do
for i €V do
for 5 €V do
pfj +— max (pfj_l,min (pik_l,pgj_l)) ;
end for
end for
end for
// Computation of robustness:

PG, = min

n .,
(gyeve i’

The main idea of Algorithm 1 is as follows. Let pfj
denote the maximal slackening of all paths (i1,42,...,1p)
between 7 and j and with intermediate nodes ia,...,%,—1
in {1,...,k}. If there does not exist a path between ¢ and
j with intermediate nodes in {1,...,k}, let pfj < 0. Then,
to compute pfj from pfjfl, either the maximal slackening
path between ¢ and j with intermediates nodes in {1, ..., k}
does not contain node k and pfj = pfj_l or it contains node
k and pf; = min(pf; ", p’,:j_l). Finally, the path-robustness
pij = Pij-

The time and space complexity of Algorithm 1 are in
O(n?) and O(n?), respectively. Let us remark that since the
graph G, o is symmetric, it is clear that for all ¢,j,k € V,
we have pfj = p?i. Then, in Algorithm 1, it is actually
only necessary to compute pfj for 7 < i, thus dividing time
complexity by two.

V. SUFFICIENT CONDITIONS FOR FLOCKING

We now have the necessary ingredients, that is Theorem 1
and Proposition 4, to establish sufficient conditions for
flocking. Let us rewrite equation (1) in matrix form:

z(t) = wv(t)
o) = —Le)w(b). ©

Let y(t) and 6(¢) be defined as in section III-B. §(t) is the
disagreement vector: a flocking behavior is achieved if and
only if §(¢) asymptotically goes to 0.

A. Main Result

The following theorem gives sufficient conditions on ini-
tial positions and velocities under which a flocking behavior

is achieved. It relates the initial value of the disagreement
vector, the robustness of the initial graph G, o and the
algebraic connectivity of the core robust subgraph M (G o).
Moreover, the theorem states that under these conditions, the
communication network remains connected for all time:

Theorem 5: Let 2° € R™ be a vector of initial positions
of the agents such that the associated graph G0 is connected
and its robustness pg , > 0. Let v € R™ be a vector
of initial velocities such that its corresponding disagreement
vector §(0) verifies

)\SpGIO
V2

where A3 = \o(M(G0)). Then, for all t € RT, M(Go)
is a subgraph of G(t). Moreover,

160 < )

15C0)]]
A3

ly(t) — 2°| <

and

58] < e *3*||5(0)]|-

Proof: Let 11 be the set of graphs with n nodes which
have M(G,o) as a subgraph. Since G0 is connected, we
have by Lemma 3, that M(G,o0) is connected. Therefore,
all graphs in II are connected and since M(G,o0) € II,

min A2(G) = Aa(M(Gpo)) = A5 > 0.

Let us assume that there exists ¢ > 0 such that M(G,o) is
not a subgraph of G(¢) (i.e. G(t) ¢ II). Let

t* = inf{t € RT; G(t) ¢ I1}.
If t* > 0, it follows from Theorem 1 that for all ¢ € [0,¢*)

* " )\*
16(t)] < e 5t )3(0)] < e~ st 2050

V2
By remarking that
¢
y(t) = 2° +/ d(s)ds
0
we have for all ¢ € [0,¢%)
Aspco 1 s PG 0
ly(t) — 2| < 22080 [ emrings < L0
V2 Jo V2

Then, by continuity of y, there exists € > 0 such that for all
te[0,t* +¢l, )
0 Go
Iy(t) —a*l < "

If t* = 0, since y(0) = 2° and by continuity of y, the same
kind of property holds. By Proposition 4, we have for all
t € [0,t* + €], Gy € II. By remarking that for all 4,5 €
V,xi(t) — x;(t) = yi(t) — y;(¢), it follows that the graph
G(t) = Guuy = Gy Thus, for all t € [0,t* +¢],G(t) €
II. This contradicts the definition of ¢*. Therefore, for all
t € RT,G(t) € II. This proves the first part of the theorem.
Then, from Theorem 1, it follows that for all t € RT,

161 < e~ [18(0)l|



and

o= < [ 1alds < [ e iepaoas < 2L

The upper bound on the initial disagreement vector given
by Theorem 5 is proportional to both the robustness of
the graph and the algebraic connectivity of its core robust
subgraph. In the case of graphs based on a metric interaction
rule, these two quantities tend to increase with the density
of the agents. Therefore, Theorem 5 shows that the higher
the disagreement between initial velocities, the denser the
group of agents must initially be to ensure that a flocking
behavior will be achieved. This observation is reasonable.
Notice that the robustness and algebraic connectivity of a
graph are bounded by R and n respectively. This shows
that when the initial velocity disagreement is too high then
there is not always a configuration of agents ensuring than
a flocking behavior will be achieved.

Theorem 5 gives sufficient conditions for flocking. An
important question is whether the bound on the initial
disagreement vector is optimal: i.e. can we find a config-
uration of agents where the non-respect of the inequality (7)
prevents the agents from achieving a flocking behavior. Such
a configuration is presented in the next paragraph.

B. Tightness of the bound

We consider a set of two agents evolving in the one-
dimensional space R. Initially, the agents have the same
position 29 = 2§ = 0. This implies that G0 is the complete
graph of order 2. The robustness of the graph is maximal
PG, = R and M(Gpo) = Gpo. It follows that A3 = 2.

Initially, the agents move with opposite velocities v{ =
—v§ = —a, for some o > 0. Then, the norm of the
disagreement vector is ||0(0)| = |[v°] = v/2a.. We choose
such that equation (7) is not satisfied, that is « > R. We now
show that the distance between the two agents eventually
becomes greater than R and that after this time, the two
agents move independently in opposite directions.

While ||z2(t) — x1(t)|| < R, the communication network

remains the same. From equation (1), we have
2(t) — 01(t) = =2(v2(t) — v1 (1))
. Since v2(0) — v1(0) = 2a and z5(0) — x1(0) =0,
va(t) — vy (t) = 2ae™

and
zo(t) —z1(t) = a(l — e~ 2.

At time T = —3 log(1 — R/a), ||lz2(T) — z1(T)|| = R and
the communication link is broken. Then, equation (1) gives
01(t) = 02(t) = 0. Then, for all ¢ > T,

Ug(t) — ’Ul(t) = 2(0[ — R) >0

and
xo(t) —z1(t) = R+2(a — R)(t — T).

1800 = Aspc,o / V2

-6 -4 -2 0 2 4 6

18(0)]] = 5A3pc,0/V2

-6 -4 -2 0 2 6

18(0)]] = 4X3pc,0 / V2

Fig. 2. Evolution of a group of mobile agents in a conflicting situation
for several values of the initial disagreement vector norm. Lines represent
communication links. Thicker lines belong to the core robust subgraph
M(G o) whereas dashed lines do not. The state of the system is shown at
times ¢ = 0, ¢ = 60 and t = 120. The trajectories of agents are displayed
in thin dotted lines. Initially, agents divide in two subgroups holding
velocities with opposite z-coordinates (blue arrows). Communication radius
is R = 3.2. Velocity arrows were increased 3 times for clarity.

-6 6

Thus, after time 7', the two agents become independent
and continue to evolve at a constant velocity in opposite
directions. The flocking behavior is not achieved.

VI. SIMULATIONS

In this section, we present simulations illustrating our
approach. Several facts are underlined. Firstly, when the
bound on the norm of the initial disagreement vector given by
equation (7) is respected, then we show that communication
links belonging to the core robust subgraph are preserved
while others can be broken. Secondly, we show that the
conditions in Theorem 5 are only sufficient and not necessary
by showing that the connectivity can be preserved and the
flocking behavior achieved even though the norm of the
initial disagreement vector does not satisfy equation (7).

To make the simulations more concrete, one can imagine
the following conflicting situation within a group of moving



agents. Initially, agents divide in two halves with velocities
bearing opposite z-coordinates. The initial positions induces
a connected communication network. We wonder whether
the group will eventually stay together and achieve a flocking
behavior or rather split apart because of the initial conflict.
As one could expect, simulations show that the answer
depends on the strength of the initial velocities of the agents.

In the first simulation, at the top of Figure 2, the bound
on the norm of the initial disagreement vector given by
equation (7) is respected. The agents start moving away
from each other but their difference of velocities rapidly
vanishes and converges to 0 due to the interactions between
agents. Thus, the interaction graph remains connected for
ever. Also, let us remark that links which did not belong to
the initial core robust subgraph M (G ,0) were not preserved.
This emphasizes the fact that Theorem 5 only guarantees the
conservation of the communication links inside the initial
core robust subgraph M (G o).

In the second simulation, in the middle of Figure 2, the
agents start with higher difference of velocities so that the
norm of the disagreement vector is 5 times larger than what it
should be to satisfy equation (7). The difference of velocities
between the two central agents starts vanishing due to their
communication link. Before the dynamics had time to even
out all conflicting velocities, the central agents moved away
from each other to a distance larger than the interaction
radius, and thus their communication link was broken. The
group divided without converging toward a common ve-
locity and its two subgroups separated indefinitely. This is
a possible outcome when the sufficient condition given in
Theorem 5 is not satisfied.

The last simulation, at the bottom of Figure 2, shows an
intermediate case between the first two simulations. Even
though the norm of the initial disagreement vector does
not satisfy equation (7), the agents still achieve a flocking
behavior. This stresses that our approach is conservative and
that the given condition is sufficient but not necessary.

VII. CONCLUSION

In this paper, we have considered a multi-agent system
consisting of mobile agents with second-order dynamics
and where the communication network is determined by
a metric interaction rule. Our approach builds upon earlier
results of Olfati-Saber and Murray [11] and links algebraic
connectivity of the communication network to the speed
of convergence towards consensus. We have established
sufficient conditions on the initial positions and velocities
of the agents which ensure that the agents will asymptot-
ically achieve flocking. Our main contribution has been to
propose a suitable notion of robustness of graphs induced
by the metric interaction rule. The robustness of a connected
graph can be understood as the level of disturbance on the
distances between agents that can be accommodated without
disconnecting the graph. Our main result states that whenever
the initial velocity disagreement among agents is smaller than
a threshold (formed with the robustness and the algebraic
connectivity of the graph), the agents will achieve a flocking

behavior. The main interest of this approach is the possibility
of ensuring flocking a priori. The sufficient condition can be
easily verified through rapid computation.

We already see two possible extensions of this work. The
first one consists in refining our sufficient condition. As
pointed out in the simulation section, the condition given
by equation (7) is fairly conservative. This is in part due
to the fact that the disagreement measure only takes into
account the velocities, it would be more informative to relate
velocity with position because two agents with opposite
velocities have more chance to agree on their velocity if
they point toward each other, than if they point away from
each other. Also, a subgroup of agents with high connectivity
is intuitively more inclined to agree on their velocity than
a subgroup of low connectivity. Thus, agents belonging to
a highly connected local neighborhood should be allowed
higher initial velocities. The second set of extensions consists
in the adaptation of the present method to different systems.
For instance, it should be possible to include time-delays
in the framework. Similarly, one can include uncertainty in
the model by adding motion disturbance or stochasticity in
interactions between agents.
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